4.8 Article

Origin of slow spontaneous resting-state neuronal fluctuations in brain networks

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1715841115

关键词

resting state fluctuations; ion concentration dynamics; network models

资金

  1. Office of Naval Research Multidisciplinary University Research Initiative Grant [N000141612829]
  2. NSF Graduate Research Fellowship [DGE-1326120]
  3. U.S. Department of Defense (DOD) [N000141612829] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Resting- or baseline-state low-frequency (0.01-0.2 Hz) brain activity is observed in fMRI, EEG, and local field potential recordings. These fluctuations were found to be correlated across brain regions and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow resting-state fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (<0.05 Hz) activity could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra- and extracellular k(+) and Na+ and intracellular Cl- ions, Na+/K+ exchange pump, and KCC2 cotransporter. In the network model simulating resting awake-like brain state, we observed infra-slow fluctuations in the extracellular K+ concentration, Na+/K+ pump activation, firing rate of neurons, and local field potentials. Holding K+ concentration constant prevented generation of the infra-slow fluctuations. The amplitude and peak frequency of this activity were modulated by the Na+/K+ pump, AMPA/GABA synaptic currents, and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state activity observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are reported as the resting-state fluctuations in fMRI and EEG recordings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据