4.8 Article

Design principles for photonic crystals based on plasmonic nanoparticle superlattices

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1800106115

关键词

photonic crystal; plasmonic nanoparticles; DNA programmable assembly; tunable bandgap; colloidal crystal

资金

  1. Air Force Office of Scientific Research Grant [FA9550-17-1-0348]
  2. Asian Office of Aerospace Research and Development (AOARD) Grant [FA2386-13-1-4124]
  3. Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0000989]
  4. Department of Energy [DE-SC0004752]
  5. National Science Foundation [CHE-1414466]
  6. Office of the Provost, the Office for Research, and Northwestern University Information Technology
  7. Materials Research Science and Engineering Center (MRSEC) Program (National Science Foundation) at the Materials Research Center [DMR-1121262]
  8. International Institute for Nanotechnology (IIN)
  9. IIN

向作者/读者索取更多资源

Photonic crystals have been widely studied due to their broad technological applications in lasers, sensors, optical telecommunications, and display devices. Typically, photonic crystals are periodic structures of touching dielectric materials with alternating high and low refractive indices, and to date, the variables of interest have focused primarily on crystal symmetry and the refractive indices of the constituent materials, primarily polymers and semiconductors. In contrast, finite difference time domain (FDTD) simulations suggest that plasmonic nanoparticle superlattices with spacer groups offer an alternative route to photonic crystals due to the controllable spacing of the nanoparticles and the high refractive index of the lattices, even far away from the plasmon frequency where losses are low. Herein, the stopband features of 13 Bravais lattices are characterized and compared, resulting in paradigm-shifting design principles for photonic crystals. Based on these design rules, a simple cubic structure with an similar to 130-nm lattice parameter is predicted to have a broad photonic stopband, a property confirmed by synthesizing the structure via DNA programmable assembly and characterizing it by reflectance measurements. We show through simulation that a maximum reflectance of more than 0.99 can be achieved in these plasmonic photonic crystals by optimizing the nanoparticle composition and structural parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据