4.8 Article

STING-dependent translation inhibition restricts RNA virus replication

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1716937115

关键词

STING; RIG-I; cGAS; interferon; translation

资金

  1. NIH [AI093589, AI116550, P30 DK34854]
  2. Burroughs Wellcome Fund
  3. Harvard Herchel Smith Graduate Fellowship

向作者/读者索取更多资源

In mammalian cells, IFN responses that occur during RNA and DNA virus infections are activated by distinct signaling pathways. The RIG-I-like-receptors (RLRs) bind viral RNA and engage the adaptor MAVS (mitochondrial antiviral signaling) to promote IFN expression, whereas cGAS (cGMP-AMP synthase) binds viral DNA and activates an analogous pathway via the protein STING (stimulator of IFN genes). In this study, we confirm that STING is not necessary to induce IFN expression during RNA virus infection but also find that STING is required to restrict the replication of diverse RNA viruses. The antiviral activities of STING were not linked to its ability to regulate basal expression of IFN-stimulated genes, activate transcription, or autophagy. Using vesicular stomatitis virus as a model, we identified a requirement of STING to inhibit translation during infection and upon transfection of synthetic RLR ligands. This inhibition occurs at the level of translation initiation and restricts the production of viral and host proteins. The inability to restrict translation rendered STING-deficient cells 100 times more likely to support productive viral infections than wild-type counterparts. Genetic analysis linked RNA sensing by RLRs to STING-dependent translation inhibition, independent of MAVS. Thus, STING has dual functions in host defense, regulating protein synthesis to prevent RNA virus infection and regulating IFN expression to restrict DNA viruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据