4.8 Article

Strong and highly variable push of ocean waves on Southern Ocean sea ice

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1802011115

关键词

wave-ice interaction; Southern Ocean marginal ice zone; wave radiation stress; Sentinel-1 SAR; synthetic aperture radar

资金

  1. Labex Mer [ANR-10-LABX-19-01]
  2. EU-FP7 project Ships and Waves Reaching Polar Regions (SWARP) [607476]
  3. Office of Naval Research (ONR) [N0001416WX01117]
  4. National Centre for Space Studies (CNES) project Wave-Ice

向作者/读者索取更多资源

Sea ice in the Southern Ocean has expanded over most of the past 20 y, but the decline in sea ice since 2016 has taken experts by surprise. This recent evolution highlights the poor performance of numerical models for predicting extent and thickness, which is due to our poor understanding of ice dynamics. Ocean waves are known to play an important role in ice break-up and formation. In addition, as ocean waves decay, they cause a stress that pushes the ice in the direction of wave propagation. This wave stress could not previously be quantified due to insufficient observations at large scales. Sentinel-1 synthetic aperture radars (SARs) provide high-resolution imagery from which wave height is measured year round encompassing Antarctica since 2014. Our estimates give an average wave stress that is comparable to the average wind stress acting over 50 km of sea ice. We further reveal highly variable half-decay distances ranging from 400 m to 700 km, and wave stresses from 0.01 to 1 Pa. We expect that this variability is related to ice properties and possibly different floe sizes and ice thicknesses. A strong feedback of waves on sea ice, via break-up and rafting, may be the cause of highly variable sea-ice properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据