4.3 Article

Dynamic lubrication analysis for a spherical pump

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1350650118762603

关键词

Spherical pump; dynamic lubrication; fluid film thickness; surface roughness; tribology

资金

  1. China Scholarship Council [201506280148]
  2. National Natural Science Foundation of China [51375362]
  3. Xi'an Zhengan Environmental Co. Ltd.

向作者/读者索取更多资源

Dynamic lubrication analyses for a spherical pump, consisting of a piston and cylinder, are presented. Contact forces between piston and cylinder are modeled first using an equivalent ball-on-plane model. Both the effects of external loads and operating conditions are considered in a dynamic elastohydrodynamic lubrication model, which is derived from Reynolds equation. Two assumed time-dependent sine-wave and square-wave loads are applied to the model. Fluid film thicknesses are estimated using the model and assumed loads, effects of different structural, and operational parameters, such as piston diameter, radial clearance, applied load, piston speed, lubricant viscosity, and surface roughness, on fluid film thickness are investigated. Fluid film thickness reactions of more realistic smooth and continuous sine wave loads are compared to discontinuous ones in order to verify whether or not assumed ideal loads are acceptable and reliable. Results indicate that piston diameter, speed, lubricant viscosity have positive relations on the dynamic lubrication performance, and increasing these values can improve the dynamic lubrication regime. While the parameters such as radial clearance, applied load, and surface roughness have the verse effects. Furthermore, the impacts of all the above parameters on fluid film are different either. These obtained results can be used to effectively optimize spherical pump lubrication performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据