4.7 Article

Magnesium casting technology for structural applications

期刊

JOURNAL OF MAGNESIUM AND ALLOYS
卷 1, 期 1, 页码 2-22

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jma.2013.02.002

关键词

-

向作者/读者索取更多资源

This paper summarizes the melting and casting processes for magnesium alloys. It also reviews the historical development of magnesium castings and their structural uses in the western world since 1921 when Dow began producing magnesium pistons. Magnesium casting technology was well developed during and after World War II, both in gravity sand and permanent mold casting as well as high-pressure die casting, for aerospace, defense and automotive applications. In the last 20 years, most of the development has been focused on thin-wall die casting applications in the automotive industry, taking advantages of the excellent castability of modern magnesium alloys. Recently, the continued expansion of magnesium casting applications into automotive, defense, aerospace, electronics and power tools has led to the diversification of casting processes into vacuum die casting, low-pressure die casting, squeeze casting, lost foam casting, ablation casting as well as semi-solid casting. This paper will also review the historical, current and potential structural use of magnesium with a focus on automotive applications. The technical challenges of magnesium structural applications are also discussed. Increasing worldwide energy demand, environment protection and government regulations will stimulate more applications of lightweight magnesium castings in the next few decades. The development of use of Integrated Computational Materials Engineering (ICME) tools will accelerate the applications of magnesium castings in structural applications. Copyright 2013, National Engineering Research Center for Magnesium Alloys of China, Chongqing University. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据