3.8 Article

Molecular Mechanics of Disulfide Bonded Alpha-Helical Protein Filaments

期刊

BIONANOSCIENCE
卷 3, 期 1, 页码 85-94

出版社

SPRINGER
DOI: 10.1007/s12668-012-0065-2

关键词

Molecular mechanics; Disulfide bond; Alpha-helix protein; Strength; Robustness; Failure

资金

  1. AFOSR
  2. ARO-MURI

向作者/读者索取更多资源

Keratin, an alpha-helical protein, is an abundant material that forms the basis of hair and hoof, and is a composite of alpha-helical coiled coils with dense disulfide bonding between helical protein domains. Here, we report a molecular analysis of the mechanics of disulfide bonded alpha-helical protein filaments, focusing on a systematic assessment of structure-property relationships and deformation and failure mechanisms, carried out using a full atomistic explicit water model based on the CHARMM force field, extended here to capture the breaking of disulfide bonds in varied chemical microenvironments. By considering a three-strand alpha-helical model of an assembly of disulfide bonds under an external loading, we demonstrate that weak disulfide cross-link results in a highly cooperative behavior. Strong disulfide bonding resist greater external load, but the cooperative behavior is reduced. We compare the mechanical behavior of the disulfide bonded systems to a molecule with weaker H-bonds between alpha-helix domains. Under mechanical loading, H-bonds between the protein filaments are easily sacrificed and the alpha-helical structure is maintained, but the system has a lower strength. Our atomistic models provide fundamental insight into the effect of disulfide cross-link on mechanical properties of alpha-helix-based protein filament and reveals that the dependence of disulfide bond strength on the chemical microenvironment enables a tunable fiber strength by a factor of approximate to 2.5.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据