4.7 Article

The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static load

期刊

POLYMER DEGRADATION AND STABILITY
卷 147, 期 -, 页码 197-205

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2017.12.007

关键词

Chemical composition; Mechanical properties; FT-IR spectroscopy; Scanning electron microscopy; Thermal modification; Wood

资金

  1. Academy of Finland [309881]

向作者/读者索取更多资源

Loss in strength and ductility is a major drawback for the heat-treatment of solid wood. Previous studies focused mainly on the de-polymerization of cell wall constituents as a cause and the importance of the preferential removal of hemicelluloses. This study tested the hypothesis that the mechanical behavior of wood is additionally affected by re-polymerization reactions within the cell wall matrix during heat-treatment. This was achieved by comparing changes in chemical composition, FT-IR spectra, and mechanical properties of Scots pine sapwood that was heat-treated in either dry state in superheated steam or in wet state using pressurized hot water. Although preferential de-polymerization of hemicelluloses was evident for both heat-treatment techniques, the analysis of the chemical composition and FT-IR spectroscopy indicated additional re-polymerization reactions within the cell wall matrix of dry heat-treated wood. The consequent formation of covalent bonds and cross-links increased the resistance against compression loads and hindered inelastic deformation during bending. This resulted in an additional reduction in bending strength and strain energy density of dry compared to wet heat treated wood. Re-polymerization reactions during heat-treatments of wood in dry state were suggested as the main cause for the brittle failure under bending loads, while the effect of hemicellulose-removal on brittleness was much smaller than stated previously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据