4.6 Article

Low-phosphate-selected Auxenochlorella protothecoides redirects phosphate to essential pathways while producing more biomass

期刊

PLOS ONE
卷 13, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0198953

关键词

-

资金

  1. National Alliance for Advanced Biofuels and Bioproducts (NAABB)

向作者/读者索取更多资源

Despite the capacity to accumulate similar to 70% w/w of lipids, commercially produced unicellular green alga A. protothecoides may become compromised due to the high cost of phosphate fertilizers. To address this limitation A. protothecoides was selected for adaptation to conditions of 100x and 5x lower phosphate and peptone, respectively, compared to wild-type media'. The A. protothecoides showed initial signs of adaptation by 45-50days, and steady state growth at similar to 100 days. The low phosphate (P)-adapted strain produced up to similar to 30% greater biomass, while total lipids (similar to 10% w/w) remained about the same, compared to the wild-type strain. Metabolomic analyses indicated that the low P -adapted produced 3.3-fold more saturated palmitic acid (16:0) and 2.2-fold less linolenic acid (18:3), compared to the wild-type strain, resulting in an similar to 11% increase in caloric value, from 19.5kJ/g for the wild type strain to 21.6kJ/g for the low P -adapted strain, due to the amounts and composition of certain saturated fatty acids, compared to the wild type strain. Biochemical changes in A. protothecoides adapted to lower phosphate conditions were assessed by comparative RNA-Seq analysis, which yielded 27,279 transcripts. Among them, 2,667 and 15 genes were significantly down- and up-regulated, at >999-fold and >3-fold (adjusted p-value <0.1), respectively. The expression of genes encoding proteins involved in cellular processes such as division, growth, and membrane biosynthesis, showed a trend toward down-regulation. At the genomic level, synonymous SNPs and Indels were observed primarily in coding regions, with the 40S ribosomal subunit gene harboring substantial SNPs. Overall, the adapted strain out-performed the wild-type strain by prioritizing the use of its limited phosphate supply for essential biological processes. The low P-adapted A. protothecoides is expected to be more economical to grow over the wild-type strain, based on overall greater productivity and caloric content, while importantly, also requiring 100-fold less phosphate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据