4.6 Article

Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling

期刊

PLOS ONE
卷 13, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0198370

关键词

-

资金

  1. Russian Science Foundation [14-50-00126]

向作者/读者索取更多资源

Additive manufacturing with fused deposition modeling (FDM) is currently optimized for a wide range of research and commercial applications. The major disadvantage of FDM-created products is their low quality and structural defects (porosity), which impose an obstacle to utilizing them in functional prototyping and direct digital manufacturing of objects intended to contact with gases and liquids. This article describes a simple and efficient approach for assessing the quality of 3D printed objects. Using this approach it was shown that the wall permeability of a printed object depends on its geometric shape and is gradually reduced in a following series: cylinder > cube > pyramid > sphere > cone. Filament feed rate, wall geometry and G-code-defined wall structure were found as primary parameters that influence the quality of 3D-printed products. Optimization of these parameters led to an overall increase in quality and improvement of sealing properties. It was demonstrated that high quality of 3D printed objects can be achieved using routinely available printers and standard filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据