4.7 Article

Recurrent processing during object recognition

期刊

FRONTIERS IN PSYCHOLOGY
卷 4, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpsyg.2013.00124

关键词

object recognition; computational model; recurrent processing; feedback; winners-take-all mechanism

向作者/读者索取更多资源

How does the brain learn to recognize objects visually, and perform this difficult feat robustly in the face of many sources of ambiguity and variability? We present a computational model based on the biology of the relevant visual pathways that learns to reliably recognize 100 different object categories in the face of naturally occurring variability in location, rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially occluded inputs. Both the unified, biologically plausible learning mechanism and the robustness to occlusion derive from the role that recurrent connectivity and recurrent processing mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and learning predicts that high-level visual representations should be shaped by error signals from nearby, associated brain areas over the course of visual learning. Consistent with this prediction, we show how semantic knowledge about object categories changes the nature of their learned visual representations, as well as how this representational shift supports the mapping between perceptual and conceptual knowledge. Altogether, these findings support the potential importance of ongoing recurrent processing throughout the brain's visual system and suggest ways in which object recognition can be understood in terms of interactions within and between processes over time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据