3.8 Article

Antimicrobial action mechanism of flavonoids from Dorstenia species

期刊

DRUG DISCOVERIES AND THERAPEUTICS
卷 7, 期 2, 页码 66-72

出版社

INT RESEARCH & COOPERATION ASSOC BIO & SOCIO-SCIENCES ADVANCEMENT
DOI: 10.5582/ddt.2013.v7.2.66

关键词

Antimicrobial; flavonoids; membrane potential; macromolecules synthesis; bactericidal/bacteriolysis

资金

  1. Matsumae International Foundation (MIF)
  2. Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
  3. Grants-in-Aid for Scientific Research [24102510, 24659041, 24689008] Funding Source: KAKEN

向作者/读者索取更多资源

Naturally occurring flavonoids have been reported to possess antimicrobial activity against a wide range of pathogens. However, the antimicrobial action mechanism of these compounds has not yet been elucidated. This study investigated the mechanism underlying the antibacterial activity of four flavonoids: 6,8-diprenyleriodictyol (1), isobavachalcone (2), 6-prenylapigenin (3) and 4-hydroxylonchocarpin (4). In addition, the toxicity of these compounds was evaluated. Determination of the minimum inhibitory concentrations (MICs) was performed by microbroth dilution method. Radiolabeled thymidine, uridine, and methionine were used to evaluate the effect of the compounds on the biosynthesis of DNA, RNA, and proteins while the sensitive cyanine dye DiS-C3-(5) (3,3'-dipropylthiadicarbocyanine iodide) was used for the effect on membrane potential. Bactericidal/bacteriolysis activities were performed by time-kill kinetic method. In the toxicity study, the numbers of survivors was recorded after injection of compounds into the hemolymph of silkworm larvae. Compounds showed significant antibacterial activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) strains with MICs values ranged between 0.5-128 mu g/mL. Depolarization of membrane and inhibition of DNA, RNA, and proteins synthesis were observed in S. aureus when treated with those flavonoids. At 5-fold minimum inhibitory concentration, compounds reduced rapidly the bacterial cell density and caused lysis of S. aureus. Compounds 1, 2, and 4 did not show obvious toxic effects in silkworm larvae up to 625 mu g/g of body weight. Flavonoids from Dorstenia species, 6,8-diprenyleriodictyol, isobavachalcone, and 4-hydroxylonchocarpin are bactericidal compounds. They cause damage of cell membrane, leading to the inhibition of macromolecular synthesis. Taking into account the in vivo safety and their significant antimicrobial potency, these flavonoids are promising leads for further drug development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据