4.7 Article

G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis

期刊

PLANT SCIENCE
卷 274, 期 -, 页码 129-136

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2018.05.019

关键词

Rice; Arabidopsis; G protein; Root system architecture; Nitrogen; Root spatial distribution

资金

  1. CSC (China Scholarship Council)

向作者/读者索取更多资源

Nitrogen is a key nutrient for plant growth and development. Plants regulate nitrogen availability and uptake efficiency through controlling root architecture. While the heterotrimeric G protein complex is an important element to regulate root morphology, it remains unknown whether the G protein regulates the root architecture in response to nitrogen supply. We used rice and Arabidopsis G protein mutants to study the root architecture in response to different nitrogen concentrations. We found that nitrogen inhibits root horizontal projection area (network area), root perimeter, total length, but not root diameter (average root width). Nitrogen influenced bushiness and root spatial distribution by inhibiting horizontal growth and promoting vertical expansion. The dynamic changes of the rice G protein mutant DK22 at different concentrations of nitrogen from day 7 to day 9 were different from the wild type with regard to bushiness and spatial distribution. The agb1-2 mutant in Arabidopsis lacked the inhibitory effect of nitrate on root growth. The heterotrimeric G protein complex regulates the inhibitory effect on root growth caused by high nitrogen supply and root spatial distribution in response to different nitrogen concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据