4.7 Article

OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 13, 期 3, 页码 1511-1520

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-13-1511-2013

关键词

-

资金

  1. European Community [237890]
  2. Ministry of Education, Culture, Sports, and Technology (MEXT), Japan [23224013]
  3. MEXT, Japan [22-7563]
  4. Grants-in-Aid for Scientific Research [10J07563, 23224013] Funding Source: KAKEN

向作者/读者索取更多资源

The isotopic fractionation in OCS photolysis is studied theoretically from first principles. UV absorption cross sections for OCS, (OCS)-S-33, (OCS)-S-34, (OCS)-S-36 and (OCS)-C-13 are calculated using the time-depedent quantum mechanical formalism and a recently developed ab-initio description of the photodissociation of OCS which takes into account the lowest four singlet and lowest four triplet electronic states. The calculated isotopic fractionations as a function of wavelength are in good agreement with recent measurements by Hattori et al. (2011) and indicate that photolysis leads to only a small enrichment of S-34 in the remaining OCS. The photodissociation dynamics provide strong evidence that the photolysis quantum yield is unity at all wavelengths for atmospheric UV excitation, for all isotopologues. A simple stratospheric model is constructed taking into account the main sink reactions of OCS and it is found that overall stratospheric removal slightly favors light OCS in constrast to the findings of Leung et al. (2002). These results show, based on isotopic considerations, that OCS is an acceptable source of background stratosperic sulfate aerosol in agreement with a recent model study of Bruhl et al. (2012). The C-13 isotopic fractionation due to photolysis of OCS in the upper stratosphere is significant and will leave a clear signal in the remaining OCS making it a candidate for tracing using the ACE-FTS and MIPAS data sets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据