4.8 Article

Flavodiiron-Mediated O2 Photoreduction Links H2 Production with CO2 Fixation during the Anaerobic Induction of Photosynthesis

期刊

PLANT PHYSIOLOGY
卷 177, 期 4, 页码 1639-1649

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.18.00721

关键词

-

资金

  1. ERA-SynBio project Sun2Chem [ERASYNBIO1-062]
  2. A*MIDEX project [ANR-11-IDEX-0001-02]
  3. Volkswagen Stiftung [Az 93412]
  4. Deutsche Forschungsgemeinschaft [GRK 2341]

向作者/读者索取更多资源

Some microalgae, such as Chlamydomonas reinhardtii, harbor a highly flexible photosynthetic apparatus capable of using different electron acceptors, including carbon dioxide (CO2), protons, or oxygen (O-2), allowing survival in diverse habitats. During anaerobic induction of photosynthesis, molecular O-2 is produced at photosystem II, while at the photosystem I acceptor side, the reduction of protons into hydrogen (H-2) by the plastidial [FeFe]-hydrogenases primes CO2 fixation. Although the interaction between H-2 production and CO2 fixation has been studied extensively, their interplay with O-2 produced by photosynthesis has not been considered. By simultaneously measuring gas exchange and chlorophyll fluorescence, we identified an O-2 photoreduction mechanism that functions during anaerobic dark-to-light transitions and demonstrate that flavodiiron proteins (Flvs) are the major players involved in light-dependent O-2 uptake. We further show that Flv-mediated O-2 uptake is critical for the rapid induction of CO2 fixation but is not involved in the creation of the micro-oxic niches proposed previously to protect the [FeFe]-hydrogenase from O-2. By studying a mutant lacking both hydrogenases (HYDA1 and HYDA2) and both Flvs (FLVA and FLVB), we show that the induction of photosynthesis is strongly delayed in the absence of both sets of proteins. Based on these data, we propose that Flvs are involved in an important intracellular O-2 recycling process, which acts as a relay between H-2 production and CO2 fixation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据