4.8 Article

The PILNCR1-miR399 Regulatory Module Is Important for Low Phosphate Tolerance in Maize

期刊

PLANT PHYSIOLOGY
卷 177, 期 4, 页码 1743-1753

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.18.00034

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFD0101002]
  2. Ministry of Agriculture of China for Transgenic Research [2018ZX0800988B]
  3. Agricultural Science and Technology Innovation Program of CAAS

向作者/读者索取更多资源

The regulation of adaptive responses to phosphorus (P) deficiency by the microRNA399 (miR399)/PHOSPHATE2 (PHO2) pathway has been well studied in Arabidopsis (Arabidopsis thaliana) but not in maize (Zea mays). Here, we show that miR399 transcripts are strongly induced in maize by phosphate (Pi) deficiency. Transgenic maize plants that overexpressed MIR399b accumulated excessive amounts of P in their shoots and displayed typical Pi-toxicity phenotypes. We reannotated ZmPHO2 with an additional 1,165 bp of the 5' untranslated region. miR399-guided posttranscriptional repression of ZmPHO2 was mainly observed in the P-efficient lines. We identified Pi-deficiency-induced long-noncoding RNA1 (PILNCR1) from our strand-specific RNA libraries. Transient expression assays in Nicotiana benthamiana and maize leaf protoplasts demonstrated that PILNCR1 inhibits ZmmiR399-guided cleavage of ZmPHO2. The abundance of PILNCR1 was significantly higher in P-inefficient lines than in P-efficient lines, which is consistent with the abundance of ZmmiR399 transcripts. These results indicate that the interaction between PILNCR1 and miR399 is important for tolerance to low Pi in maize.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据