4.7 Article

Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system

期刊

PLANT BIOTECHNOLOGY JOURNAL
卷 16, 期 11, 页码 1892-1903

出版社

WILEY
DOI: 10.1111/pbi.12924

关键词

CRISPR/Cas9; gene-editing; barley; wheat; rice; MORC1; Blumeria; Fusarium

资金

  1. German Research Council (Deutsche Forschungsgemeinschaft, DFG) [Ko 1208/23-1]
  2. Deutscher Akademischer Austauschdienst (DAAD)
  3. German Research Council (DFG) [STU642-1 / 1]
  4. Collaborative Research Center [648]

向作者/读者索取更多资源

Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (KO) mutants were not available and assessment of loss of function relied only on RNAi strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus pyogenes Cas9 (SpCas9)-mediated KO strategy to functionally study HvMORC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%-100%), which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorc1-KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed de-repressed expression of transposable elements (TEs), substantiating that plant MORC proteins contribute to genome stabilization in monocotyledonous and dicotyledonous plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据