4.5 Article

Multiple Nodulation Genes Are Up-Regulated During Establishment of Reniform Nematode Feeding Sites in Soybean

期刊

PHYTOPATHOLOGY
卷 108, 期 2, 页码 275-291

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PHYTO-04-17-0154-R

关键词

RNA-seq; nodulin; plant-parasitic nematode

资金

  1. South Carolina Soybean Board and Cotton Incorporated [16-341SC]

向作者/读者索取更多资源

The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with reniform nematode infection are well documented, little is known about their molecular basis. We grew soybean (Glycine max) in a split-root growth system, inoculated half of each root system with R. reniformis, and quantified gene expression in infected and control root tissue at four dates after inoculation. Over 6,000 genes were differentially expressed between inoculated and control roots on at least one date (false discovery rate [FDR] = 0.01, vertical bar log(2)FC vertical bar >= 1), and 507 gene sets were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters were induced, as were plant CLAVATA3/ESR-related (CLE) signaling proteins and cell cycle regulators such as CCS52A and E2F. Nodulins and nodule-associated genes may have ancestral functions in normal root development and mycorrhization that have been co-opted by both parasitic nematodes and rhizobial bacteria to promote feeding site and nodule formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据