4.1 Article

ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices

期刊

JOURNAL OF SEMICONDUCTORS
卷 34, 期 5, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1674-4926/34/5/053005

关键词

ZnO; nanoparticles; photoluminescence; down-shifting; external quantum efficiency

资金

  1. Chinese Scientific Council (CSC)

向作者/读者索取更多资源

The optical properties of ZnO nanoparticles (NPs) fabricated by three different methods were studied by the UV-excited continuous wave photoluminescence in order to estimate their down-shifting (DS) efficiency. Such a luminescent layer modifies the incident solar radiation via emitting wavelengths better matching the spectral response of the underlying photosensitive device (photodiode), thereby increasing its efficiency. Some of the studied ZnO NPs were subsequently deposited on the front side of commercial silicon photodiodes and the external quantum efficiency (EQE) characteristics of the final devices were measured. Through comparison of the photodiode's EQE characteristics before and after the deposition of the ZnO NPs layer, it was concluded that for the photodiode with a low UV sensitivity (about 8%), the ZnO luminescent layer produces a down-shifting effect and the EQE in the UV and blue range improves by 16.6%, while for the photodiodes with a higher initial UV sensitivity (about 50%), the EQE in this range decreases with the ZnO layer thickness, due to the effects competing with DS, like the diminution of the ZnO layer transmittance and an increasing diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据