4.6 Article

Analysis of Fabry-Perot optical micro-cavities based on coating-free all-Silicon cylindrical Bragg reflectors

期刊

OPTICS EXPRESS
卷 21, 期 2, 页码 2378-2392

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.21.002378

关键词

-

类别

向作者/读者索取更多资源

We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q similar to 1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations. (C) 2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据