4.8 Article

Nanomechanical Characterization of the Kondo Charge Dynamics in a Carbon Nanotube

期刊

PHYSICAL REVIEW LETTERS
卷 120, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.120.246802

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Hu 1808/1, GRK 1570, SFB 689]
  2. Studienstiftung des deutschen Volkes

向作者/读者索取更多资源

Using the transversal vibration resonance of a suspended carbon nanotube as a charge detector for its embedded quantum dot, we investigate the case of strong Kondo correlations between a quantum dot and its leads. We demonstrate that even when large Kondo conductance is carried at odd electron number, the charging behavior remains similar between odd and even quantum dot occupations. While the Kondo conductance is caused by higher order processes, a sequential tunneling only model can describe the time-averaged charge. The gate potentials of the maximum current and fastest charge increase display a characteristic relative shift, which is suppressed at increased temperature. These observations agree very well with models for Kondo-correlated quantum dots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据