4.8 Article

Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States

期刊

PHYSICAL REVIEW LETTERS
卷 120, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.120.083602

关键词

-

资金

  1. National Basic Research Program of China [2014CB921401]
  2. National Natural Science Foundation of China [91321208]
  3. NIST Quantum Based Metrology Initiative

向作者/读者索取更多资源

Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a.-type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of > 99.39% and negative group velocities of up to -0.52 +/- 0.09 km/s based on our data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据