4.6 Article

Time-resolved FTIR study of light-driven sodium pump rhodopsins

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 26, 页码 17694-17704

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp02599a

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [MOST 103-2113-M-037-008-MY2]
  2. Japanese Ministry of Education, Culture, Sports, Science and Technology [26708001, 26115706, 26620005, 25104009, 15H02391]

向作者/读者索取更多资源

Light-driven sodium ion pump rhodopsin (NaR) is a new functional class of microbial rhodopsin. A previous flash photolysis study of Krokinobacter eikastus rhodopsin 2 (KR2) revealed the presence of three kinetically distinct intermediates: K, L/M, and O. Previous low-temperature Fourier-transform infrared (FTIR) spectroscopy of KR2 showed that photoisomerization from the all-trans to the 13-cis form is the primary event of the Na+ pumping photocycle, but structural information on the subsequent intermediates is limited. Here, we applied step-scan time-resolved FTIR spectroscopy to KR2 and Nonlabens dokdonensis rhodopsin 2 (NdR2). Both low-temperature static and time-resolved FTIR spectra resolved a K-like intermediate, and the corresponding spectra showed few differences. Strong hydrogen-out-of-plane (HOOP) vibrations, which appeared in the K intermediate, are common among other rhodopsins. It is, however, unique for NaR that such HOOP bands are persistent in late intermediates, such as L and O intermediates. This observation strongly suggests similar chromophore structures for the K, L, and O intermediates. In fact, an isotope-labeled study that used 12,14-D-2 retinal revealed that the chromophore configuration of the O intermediate in NaR is 13-cis. In contrast to the vibrations of the chromophore, those of the protein differ among intermediates, and this is related to the sodium-pumping function. The molecular mechanism of the light-driven sodium pump is discussed on the basis of the present time-resolved FTIR results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据