4.6 Article

Molecular dynamics of the halloysite nanotubes

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 8, 页码 5841-5849

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp06575b

关键词

-

资金

  1. Russian Science Foundation [15-12-20021]
  2. [16.2822.2017/4.6]
  3. Russian Science Foundation [15-12-20021] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

We report large-scale and long-time molecular dynamics simulations demonstrating the transformation of a single kaolin alumosilicate sheet to a halloysite nanotube. The models we consider contain up to 5 x 10(5) atoms, which is two orders of magnitude larger than that used in previous theoretical works. It was found that the temperature plays a crucial role in the formation of the rolled geometry of the halloysite. For the models with periodic boundary conditions, we observe the tendency to form twin-tube structures, which is confirmed experimentally by atomic force microscopy imaging. The molecular dynamics calculations show that the rate of the rolling process is very sensitive to the choice of the winding axis and varies from 5 ns to 25 ns. The effects of the open boundary conditions and the initial form of the kaolin alumosilicate sheet are discussed. Our simulation results are consistent with experimental TEM and AFM halloysite tube imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据