4.6 Article

The role of hydrophobic hydration in the LCST behaviour of POEGMA300 by all-atom molecular dynamics simulations

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 22, 页码 15389-15399

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp02026d

关键词

-

资金

  1. TUBITAK, The Scientific and Technological Research Council of Turkey [115F251]

向作者/读者索取更多资源

The solubility and lower critical solution temperature (LCST) behaviour of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA(300)) in water were comprehensively investigated by all-atom molecular dynamics (MD) simulations for 5-, 20-, 50-and 75-mer homopolymers. According to various structural and dynamic properties, the water-solubility of POEGMA(300) below the LCST is mainly provided by hydrophobic hydration around the side chain carbon atoms, which is achieved by cage-like water formations. The LCST phase transition occurs when these cage-like structures are disrupted by increasing the temperature above the LCST. During this process, significant amounts of water molecules are released and the local water-ordering is reduced. Moreover, the number of hydrogen bonds and hydrogen bond lifetime results indicate that the hydrogen bonding between polymers and water molecules has relatively little effect on the phase transition. Also, the diffusion rates of 50-and 75-mer POEGMA(300) decrease with increasing temperature, which may be due to the breakage of cage-like water structures when the polymer exceeds a certain chain length. Our atomistic level findings will enhance the understanding of the LCST phase transition of OEGMA based homopolymers and will be helpful to design homo-and co-polymers of OEGMAs with required properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据