4.4 Article

Neuromorphic Computing with Memristor Crossbar

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssa.201700875

关键词

deep neural networks; memristor crossbar; memristors; neuromorphic computing; spiking neural networks

资金

  1. National Natural Science Foundation of China [11574017, 11574021, 51372008, 11604007]
  2. Special Foundation of Beijing Municipal Science & Technology Commission [Z161100000216149]
  3. City University of Hong Kong Strategic Research Grant (SRG) [7004644]

向作者/读者索取更多资源

Neural networks, one of the key artificial intelligence technologies today, have the computational power and learning ability similar to the brain. However, implementation of neural networks based on the CMOS von Neumann computing systems suffers from the communication bottleneck restricted by the bus bandwidth and memory wall resulting from CMOS downscaling. Consequently, applications based on large-scale neural networks are energy/area hungry and neuromorphic computing systems are proposed for efficient implementation of neural networks. Neuromorphic computing system consists of the synaptic device, neuronal circuit, and neuromorphic architecture. With the two-terminal nonvolatile nanoscale memristor as the synaptic device and crossbar as parallel architecture, memristor crossbars are proposed as a promising candidate for neuromorphic computing. Herein, neuromorphic computing systems with memristor crossbars are reviewed. The feasibility and applicability of memristor crossbars based neuromorphic computing for the implementation of artificial neural networks and spiking neural networks are discussed and the prospects and challenges are also described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据