4.2 Article

A refined mean field approximation of synchronous discrete-time population models

期刊

PERFORMANCE EVALUATION
卷 126, 期 -, 页码 1-21

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.peva.2018.05.002

关键词

Mean field approximation; Discrete time population models; Accuracy of approximation

向作者/读者索取更多资源

Mean field approximation is a popular method to study the behaviour of stochastic models composed of a large number of interacting objects. When the objects are asynchronous, the mean field approximation of a population model can be expressed as an ordinary differential equation. When the objects are (clock-) synchronous the mean field approximation is a discrete time dynamical system. We focus on the latter. We study the accuracy of mean field approximation when this approximation is a discrete-time dynamical system. We extend a result that was shown for the continuous time case and we prove that expected performance indicators estimated by mean field approximation are O(1/N)-accurate. We provide simple expressions to effectively compute the asymptotic error of mean field approximation, for finite time-horizon and steady-state, and we use this computed error to propose what we call a refined mean field approximation. We show, by using a few numerical examples, that this technique improves the quality of approximation compared to the classical mean field approximation, especially for relatively small population sizes. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据