4.5 Article

The application of a groundwater/surface-water model to test the vulnerability of Bracciano Lake (near Rome, Italy) to climatic and water-use stresses

期刊

HYDROGEOLOGY JOURNAL
卷 23, 期 7, 页码 1481-1498

出版社

SPRINGER
DOI: 10.1007/s10040-015-1271-0

关键词

Groundwater flow; Conceptual models; Numerical modelling; Groundwater-lake interaction; Italy

向作者/读者索取更多资源

Modelling tools are necessary for quantitative assessment of groundwater-dependent systems such as interacting groundwater aquifers and lakes. Numerical groundwater models supplemented by stream and lake submodels are the best available tools for testing the conceptual relation of surface water to groundwater, for identifying gaps in the amount and quality of data, and for better understanding the sustainability of a groundwater-lake system in the presence of stresses. Models are of particular interest when applied to an infrequently studied geological context that is subject to specific vulnerabilities and patterns of interaction. Volcanic lakes are one setting where flow models serve to extend current conceptual and practical understanding. In this study, a groundwater/surface-water flow model is presented for the flow-through Bracciano deep caldera lake located near Rome, Italy. The steady-state model quantifies and tests the existing conceptual understanding of the system by taking account of all sources and sinks, and by calibration of key parameters to head and flow data. A transient version of the model demonstrates the response of the system to dry and wet years and to anthropogenic stresses. Although precipitation is the dominant source of water overall for the lake, a major finding of this study is that the groundwater inflow to the lake can buffer fluctuations in lake-water level and reduce lake-level declines, especially during shorter periods of dry conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据