4.5 Article

Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure

期刊

OSTEOPOROSIS INTERNATIONAL
卷 29, 期 8, 页码 1887-1895

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00198-018-4568-8

关键词

BMD; Fracture risk; Melanin density; Skin pigmentation; Vitamin D

资金

  1. National Health and Medical Research Council of Australia
  2. Tasmanian Community Fund
  3. Masonic Centenary Medical Research Foundation
  4. Royal Hobart Hospital Research Foundation
  5. Arthritis Foundation of Australia

向作者/读者索取更多资源

Greater skin pigmentation reduces dose equivalent cutaneous vitamin D3 production, potentially impacting lifetime vitamin D status and fracture risk. We show that melanin density was positively associated with 25-hydroxyvitamin D and total body bone mineral density. These relationships were partially explained by greater sun exposure due to more permissive skin phenotype. Higher cutaneous melanin reduces vitamin D3 production. This may impact lifetime vitamin D status and increase fracture risk. This study aimed to describe the relationship between spectrophotometrically determined constitutive melanin density, osteoporotic risk factors and potential intermediaries in a cohort of exclusively older Caucasian adults. One thousand seventy-two community-dwelling adults aged 50-80 years had constitutive melanin density quantified using spectrophotometry. Sun exposure, skin phenotype, non-melanoma skin cancer (NMSC) prevalence and smoking status were assessed by questionnaire. Bone mineral density (BMD), falls risk, physical activity and 25-hydroxyvitamin D were measured using DXA, the short form Physiological Profile Assessment, pedometer and radioimmunoassay, respectively. Higher melanin density was independently associated with greater ability to tan (RR = 1.27, p < 0.001), less propensity to sunburn (RR = 0.92, p < 0.001), fewer lifetime sunburns (RR = 0.94, p = 0.01), current smoking (RR = 1.41, p < 0.001), female sex (RR = 1.24, p < 0.001) and less photodamage (RR = 0.98, p = 0.01). The associations between melanin density and sun exposure (RR = 1.05-1.11, p < 0.001-0.01), sun protection behaviours (RR = 0.89, p < 0.001) and NMSC prevalence (RR = 0.75, p = 0.001) were no longer significant after taking into account skin phenotype and sun exposure, respectively. 25-Hydroxyvitamin D was strongly associated with higher melanin density (beta = 1.71-2.05, p = 0.001). The association between melanin density and total body BMD (beta = 0.007, p = 0.04) became non-significant after adjustment for 25-hydroxyvitamin D. There was no association between melanin density and physical activity, falls risk or BMD at other sites. Our data support a model of higher constitutive melanin density underpinning a less photosensitive skin phenotype, permitting greater sun exposure with fewer sequelae and yielding higher 25-hydroxyvitamin D and, potentially, total body BMD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据