4.5 Article

Spatial and temporal shifts in fluvial sedimentary organic matter composition from a High Arctic watershed impacted by localized slope disturbances

期刊

ORGANIC GEOCHEMISTRY
卷 123, 期 -, 页码 113-125

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.orggeochem.2018.07.004

关键词

Cape Bounty; Active layer detachments; Biomarkers; Solid-state C-13 NMR; Fluvial transport; Radiocarbon; Organic matter biogeochemistry

资金

  1. Arctic Net-NCE
  2. ADAPT (Arctic Development and Adaptation to Permafrost in Transition) Natural Sciences and Engineering Research Council (NSERC) Discovery Frontiers grant
  3. NSERC

向作者/读者索取更多资源

Arctic warming may induce slope failure in upland permafrost soils. These landslide-like events, referred to as active layer detachments (ALDs), redistribute soil material into hydrological networks during spring melt and heavy rainfall. In 2011, 2013 and 2014, fluvial sediments from the West River at the Cape Bounty Arctic Watershed Observatory were sampled where ALDs occurred in 2007-2008. Two ALD-impacted subcatchments were examined exhibiting either continuing disturbance or short-term stabilization. Solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy and targeted biomarker analysis via gas chromatography-mass spectrometry were used to investigate shifts in organic matter (OM) composition. Additionally, radiocarbon ages were determined using accelerator mass spectrometry. Biomarker concentrations and O-alkyl carbon assessed via NMR were both lower in sediments nearest the active disturbance and increased in sediments downstream where other aquatic inputs became more dominant. This suggests immobilization of recalcitrant OM near the ALD and the sustained transport of labile ALD-derived OM further downstream. Shifts toward older radiocarbon dates along the river between 2011 and 2014 suggest the continued transport of permafrost-derived OM downstream. The stabilizing subcatchment revealed high O-alkyl carbon via NMR and increased concentrations of unaltered terrestrial-derived biomarkers indicative of enhanced OM accumulation following ALD activity. The relatively young radiocarbon ages from these sediments suggest accumulation from contemporary sources and potential burial of the previously dispersed ALD inputs. Within the broader context of Arctic climate change, these results portray a complex environmental trajectory for thaw-released permafrost-derived OM and highlight uncertainty in the relationship between lability and persistence upon release by permafrost disturbance. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据