4.6 Article

V2O5-PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells

期刊

ORGANIC ELECTRONICS
卷 53, 期 -, 页码 66-73

出版社

ELSEVIER
DOI: 10.1016/j.orgel.2017.10.034

关键词

Vanadium oxide; Charge transport; Stability; Interface; Impedance spectroscopy

资金

  1. Future Solar Technologies Pty. Ltd.

向作者/读者索取更多资源

Hybrid halide perovskite solar cells (PSCs) have emerged as a strong candidate for low cost photovoltaics, owing to ease of processing and material abundance. The stability and performance of these devices are contingent on the quality of the interfaces. In this work, we report the novel interface engineered hole transport layer (HTL), incorporating Vanadium Pentoxide (V2O5) and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) bilayer (PVO) for efficient charge transport in the devices. The devices incorporating the PVO bilayer HTL exhibits 20% higher power conversion efficiency (PCE) than conventional PEDOT only devices. The PSCs incorporating the PVO bilayer HTL demonstrated superior electronic properties as evaluated using impedance spectroscopy measurements. The recombination resistance (R-Rec) of the bilayer based devices are 57% higher than the reference cells. In addition to high charge selectivity, the bilayer PSCs exhibit low interfacial capacitance originating from electrode polarization and almost zero hysteresis. Furthermore, the bilayer based devices are more stable than PEDOT only devices; retaining 95% of their initial PCE even after 18 days of testing. The mechanism behind superior charge transport in PVO bilayer HTL and its role in stability enhancement are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据