4.5 Article

Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2013)064

关键词

Models of Quantum Gravity; Nonperturbative Effects; Renormalization Group

资金

  1. STFC Consolidated Grant [ST/J000396/1]
  2. Science and Technology Facilities Council [ST/J000396/1] Funding Source: researchfish
  3. STFC [ST/J000396/1] Funding Source: UKRI

向作者/读者索取更多资源

In this paper we review the definition and properties of redundant operators in the exact renormalisation group. We explain why it is important to require them to be eigenoperators and why generically they appear only as a consequence of symmetries of the particular choice of renormalisation group equations. This clarifies when Newton's constant and or the cosmological constant can be considered inessential. We then apply these ideas to the Local Potential Approximation and approximations of a similar spirit such as the f(R) approximation in the asymptotic safety programme in quantum gravity. We show that these approximations can break down if the fixed point does not support a 'vacuum' solution in the appropriate domain: all eigenoperators become redundant and the physical space of perturbations collapses to a point. We show that this is the case for the recently discovered lines of fixed points in the f(R) flow equations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据