4.6 Article

Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides

期刊

OPTICS LETTERS
卷 43, 期 8, 页码 1806-1809

出版社

OPTICAL SOC AMER
DOI: 10.1364/OL.43.001806

关键词

-

类别

资金

  1. National Science Foundation (NSF) [DMR-1709612, DMR-1420645]

向作者/读者索取更多资源

We propose a scheme to realize nonlinear coherent perfect absorption (CPA) at the nanoscale using epsilon-near-zero (ENZ) plasmonic waveguides. The general conditions to achieve CPA in a linear ENZ plasmonic waveguide are analyzed and presented. The proposed ENZ waveguides support an effective ENZ response at their cutoff frequency, where the CPA effect occurs under the illumination of two counterpropagating plane waves with equal amplitudes and appropriate phase distributions. In addition, the strong and uniform field enhancement inside the nanochannels of the waveguides at the ENZ resonance can efficiently boost Kerr nonlinearities, resulting in a new all-optical switching intensity-dependent CPA phenomenon that can be tunable with ultrafast speed. The proposed free-standing ENZ structures combine third-order nonlinear functionality with standing wave CPA interference effects in a nanoscale plasmonic configuration, thus leading to a novel degree of tunable light-matter interactions achieved in subwavelength regions. Our findings provide a new platform to efficiently excite nonlinear phenomena at the nanoscale and design tunable coherent perfect absorbers. (C) 2018 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据