4.6 Review

Nanophotonics with 2D transition metal dichalcogenides [Invited]

期刊

OPTICS EXPRESS
卷 26, 期 12, 页码 15972-15994

出版社

Optica Publishing Group
DOI: 10.1364/OE.26.015972

关键词

-

类别

资金

  1. Air Force Office of Scientific Research [FA9550-17-1-0002]

向作者/读者索取更多资源

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) have recently become attractive materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. Their bandgap lies in the visible and near-IR range, and they possess strong excitonic resonances, high oscillator strengths, and valley-selective response. Coupling these materials to optical nanocavities enhances the quantum yield of exciton emission, enabling advanced quantum optics and nanophotonics devices. Here, we review the state-of-the-art advances of hybrid exciton-polariton structures based on monolayer TMDCs coupled to plasmonic and dielectric nanocavities. We discuss the optical properties of 2D WS2, WSe2, MoS2 and MoSe2 materials, paying special attention to their energy bands, photoluminescence/absorption spectra, excitonic fine structure, and to the dynamics of exciton formation and valley depolarization. We also discuss light-matter interactions in such hybrid exciton-polariton structures. Finally, we focus on weak and strong coupling regimes in monolayer TMDCs-based exciton-polariton systems, envisioning research directions and future opportunities for this material platform. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据