4.6 Article

Waveguide-based electro-absorption modulator performance: comparative analysis

期刊

OPTICS EXPRESS
卷 26, 期 12, 页码 15445-15470

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.26.015445

关键词

-

类别

资金

  1. Army Research Office (ARO) [W911NF-16-2-0194]
  2. Air Force Office of Scientific Research (AFOSR) [FA9550-17-1-0377]

向作者/读者索取更多资源

Electro-optic modulators perform a key function for data processing and communication. Rapid growth in data volume and increasing bits per second rates demand increased transmitter and thus modulator performance. Recent years have seen the introduction of new materials and modulator designs to include polaritonic optical modes aimed at achieving advanced performance in terms of speed, energy efficiency, and footprint. Such ad hoc modulator designs, however, leave a universal design for these novel material classes of devices missing. Here we execute a holistic performance analysis for waveguide-based electro-absorption modulators and use the performance metric switching energy per unit bandwidth (speed). We show that the performance is fundamentally determined by the ratio of the differential absorption cross-section of the switching material's broadening and the waveguide effective mode area. We find that the former shows highest performance for a broad class of materials relying on Pauli-blocking (absorption saturation), such as semiconductor quantum wells, quantum dots, graphene, and other 2D materials, but is quite similar amongst these classes. In this respect these materials are clearly superior to those relying on free carrier absorption, such as Si and ITO. The performance improvement on the material side is fundamentally limited by the oscillator sum rule and thermal broadening of the Fermi-Dirac distribution. We also find that performance scales with modal waveguide confinement. Thus, we find highest energy-bandwidth-ratio modulator designs to be graphene, QD, QW, or 2D material-based plasmonic slot waveguides where the electric field is in-plane with the switching material dimension. We show that this improvement always comes at the expense of increased insertion loss. Incorporating fundamental device physics, design trade-offs, and resulting performance, this analysis aims to guide future experimental modulator explorations. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据