4.5 Review

Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia

期刊

HUMAN MOLECULAR GENETICS
卷 25, 期 -, 页码 R53-R64

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddv442

关键词

-

资金

  1. NIH [NS045667, NS069798]
  2. University of Iowa Roy J. Carver Trust
  3. National Ataxia Foundation
  4. Hereditary Disease Foundation
  5. Medical Research Foundation
  6. ONPRC Core Grant [P51OD011092]

向作者/读者索取更多资源

RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据