4.8 Article

Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility

期刊

ONCOGENE
卷 37, 期 35, 页码 4838-4853

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41388-018-0319-8

关键词

-

资金

  1. Natural Science Foundation of Guangdong Province [2014A030313779]
  2. Shenzhen basic research program [JCYJ20160527100529884, JCYJ20170818085657917]

向作者/读者索取更多资源

Nuclear receptor NR1D2 is originally characterized as the repressor of genes involved in circadian rhythm. Recently, it is documented that NR1D2 is overexpressed in various cancers. However, the pathways and biological functions that NR1D2 involved in cancers remain poorly understood. Here, we reported that NR1D2 was abundant in human glioblastoma (GBM) tissue and cell lines but not primary human astrocytes. Silencing of NR1D2 changed the morphology of GBM cells, inhibited cell proliferation and motility, whereas had no effects on apoptosis. Importantly, based on RNA-seq and ChIP assay, we identified receptor tyrosine kinase AXL as a new transcriptional target of NR1D2 in GBM cells. AXL mediated partially the regulatory effects of NR1D2 on PI3K/AKT axis and promoted proliferation, migration, and invasion of GBM cells. Besides, NR1D2 knockdown remarkably impaired the maturation of focal adhesion and assembly of F-actin, along with downregulated p-FAK, and proteins involved in actin nucleation and polymerization (p-Rac1/Cdc42, WAVE and PFN2). Moreover, NR1D2 had more targets other than AXL to regulate epithelial-to-mesenchymal transition and cell motility in GBM cells. Altogether, our findings uncover a GBM-promoting role of NR1D2 and provide the rationale for targeting NR1D2 as a potential therapeutic approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据