4.5 Article

Demographic variability and heterogeneity among individuals within and among clonal bacteria strains

期刊

OIKOS
卷 127, 期 5, 页码 728-737

出版社

WILEY
DOI: 10.1111/oik.04292

关键词

fixed heterogeneity; dynamic heterogeneity; neutral variability; tradeoff; life history evolution; senescence; aging

类别

资金

  1. Max Planck Society
  2. Deutsche Forschungsgemeinschaft [SFB 973]

向作者/读者索取更多资源

Identifying what drives individual heterogeneity has been of long interest to ecologists, evolutionary biologists and biodemographers, because only such identification provides deeper understanding of ecological and evolutionary population dynamics. In natural populations one is challenged to accurately decompose the drivers of heterogeneity among individuals as genetically fixed or selectively neutral. Rather than working on wild populations we present here data from a simple bacterial system in the lab, Escherichia coli. Our system, based on cutting-edge microfluidic techniques, provides high control over the genotype and the environment. It therefore allows to unambiguously decompose and quantify fixed genetic variability and dynamic stochastic variability among individuals. We show that within clonal individual variability (dynamic heterogeneity) in lifespan and lifetime reproduction is dominating at about 90-92%, over the 8-10% genetically (adaptive fixed) driven differences. The genetic differences among the clonal strains still lead to substantial variability in population growth rates (fitness), but, as well understood based on foundational work in population genetics, the within strain neutral variability slows adaptive change, by enhancing genetic drift, and lowering overall population growth. We also revealed a surprising diversity in senescence patterns among the clonal strains, which indicates diverse underlying cell-intrinsic processes that shape these demographic patterns. Such diversity is surprising since all cells belong to the same bacteria species, E. coli, and still exhibit patterns such as classical senescence, non-senescence, or negative senescence. We end by discussing whether similar levels of non-genetic variability might be detected in other systems and close by stating the open questions how such heterogeneity is maintained, how it has evolved, and whether it is adaptive.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据