4.5 Article

Diversity-biomass relationship across forest layers: implications for niche complementarity and selection effects

期刊

OECOLOGIA
卷 187, 期 3, 页码 783-795

出版社

SPRINGER
DOI: 10.1007/s00442-018-4144-0

关键词

Ecosystem function; Functional diversity; Forest strata; Species coexistence; Structural equation modelling

类别

资金

  1. African Forest Forum
  2. Research Division of Stellenbosch University

向作者/读者索取更多资源

Forest stratification plays a crucial role in light interception and plant photosynthetic activities. However, despite the increased number of studies on biodiversity-ecosystem function, we still lack information on how stratification in tropical forests modulates biodiversity effects. Moreover, there is less investigation and argument on the role of species and functional traits in forest layers. Here, we analysed from a perspective of forest layer (sub-canopy, canopy and emergent species layers), the relationship between diversity and aboveground biomass (AGB), focusing on functional diversity and dominance, and underlying mechanisms such as niche complementarity and selection. The sub-canopy layer had the highest species richness and diversity, while the emergent layer had the highest AGB. Species richness-AGB relationship was positive for each forest layer, but stronger for sub-canopy layer than for canopy and emergent layers. Total AGB was strongly correlated with functional diversity, leaf and wood traits of species in the sub-canopy and canopy layers. This suggests that sub-canopy and canopy species are major drivers of stand diversity-AGB relationship, and that resource filtering by canopy or emergent trees may not reduce the strength of diversity-AGB relationship in the sub-canopy layer. We argue that complementary resource use by sub-canopy species that supports niche complementarity, is a key mechanism driving AGB in natural forests. Selection effects are most evident in emergent species and niche complementarity effects for sub-canopy and canopy species, supporting arguments that AGB is affected by sub-canopy species' efficient use of limited resources despite competition from emergent species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据