4.7 Article

Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions

期刊

OCEAN ENGINEERING
卷 163, 期 -, 页码 183-190

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2018.05.060

关键词

Dynamic response; Differential quadrature method; Numerical inversion of Laplace transform; Galerkin method

资金

  1. National Natural Science Foundation of China [51679214, 51409228]
  2. Fundamental Research Funds for the Central Universities [2018QNA4047]

向作者/读者索取更多资源

This paper analyzes the dynamic behavior of a fluid-conveying pipe with different pipe end boundary conditions. The pipe is considered to be an Euler-Bernoulli beam, and a motion equation for the pipe is derived using Hamilton's principle. A semi-analytical method, which includes the differential quadrature method (DQM) and the Laplace transform and its inverse, is used to obtain a model for the dynamic behavior of the pipe. The use of DQM provides a solution in terms of pipe length whereas use of the Laplace transform and its inverse produce a solution in terms of time. An examination of the results of sampling pipe displacement at different numbers of sample points along the pipe length shows that the method we developed has a fast convergence rate. The frequency and critical velocity of the fluid-conveying pipe derived by DQM are exactly the same as the exact solution. The numerical results given by the model match well with the result obtained using the Galerkin method. The effect on pipe displacement of the pipe end boundary conditions is investigated, and it increases with an increase in the edge degrees of freedom. The results obtained in this paper can serve as benchmark data in further research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据