4.8 Article

Direct transfection of clonal organoids in Matrigel microbeads: a promising approach toward organoid-based genetic screens

期刊

NUCLEIC ACIDS RESEARCH
卷 46, 期 12, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gky030

关键词

-

资金

  1. Commissariat a l'Energie Atomique (CEA) [Plan de couplage DSV-DRT]
  2. Agence Nationale de la Recherche (ANR)
  3. Investissements d'avenir [ANR-11-NANB-0002]
  4. Grenoble Alps Metropole (Proof of Concept program of Canceropole CLARA (PROscan3D project))
  5. CEA
  6. ANR

向作者/读者索取更多资源

Organoid cultures in 3D matrices are relevant models to mimic the complex in vivo environment that supports cell physiological and pathological behaviors. For instance, 3D epithelial organoids recapitulate numerous features of glandular tissues including the development of fully differentiated acini that maintain apico-basal polarity with hollow lumen. Effective genetic engineering in organoids would bring new insights in organogenesis and carcinogenesis. However, direct 3D transfection on already formed organoids remains challenging. One limitation is that organoids are embedded in extracellular matrix and grow into compact structures that hinder transfection using traditional techniques. To address this issue, we developed an innovative approach for transgene expression in 3D organoids by combining single-cell encapsulation in Matrigel microbeads using a microfluidic device and electroporation. We demonstrate that direct electroporation of encapsulated organoids reaches up to 80% of transfection efficiency. Using this technique and a morphological read-out that recapitulate the different stages of tumor development, we further validate the role of p63 and PTEN as key genes in acinar development in breast and prostate tissues. We believe that the combination of controlled organoid generation and efficient 3D transfection developed here opens new perspectives for flow-based high-throughput genetic screening and functional genomic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据