4.3 Article

Thermalization of holographic Wilson loops in spacetimes with spatial anisotropy

期刊

NUCLEAR PHYSICS B
卷 931, 期 -, 页码 506-536

出版社

ELSEVIER
DOI: 10.1016/j.nuclphysb.2018.04.016

关键词

-

向作者/读者索取更多资源

In this paper, we study behavior of Wilson loops in the boost-invariant nonequilibrium anisotropic quark-gluon plasma produced in heavy-ion collisions within the holographic approach. We describe the thermalization studying the evolution of the Vaidya metric in the boost-invariant and spatially anisotropic background. To probe the system during this process we calculate rectangular Wilson loops oriented in different spatial directions. We find that anisotropic effects are more visible for the Wilson loops lying in the transversal plane unlike the Wilson loops with partially longitudinal orientation. In particular, we observe that the Wilson loops can thermalizes first unlike to the order of the isotropic model. We see that Wilson loops on transversal contours have the shortest thermalization time. We also calculate the string tension and the pseudopotential at different temperatures for the static quark-gluon plasma. We show that the pseudopotential related to the configuration on the transversal plane has the screened Cornell form. We also show that the jet-quenching parameter related with the average of the light-like Wilson loop exhibits the dependence on orientations. (C) 2018 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据