4.6 Article

Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta)

期刊

NEW PHYTOLOGIST
卷 219, 期 1, 页码 462-473

出版社

WILEY
DOI: 10.1111/nph.15137

关键词

anisogamy; diatoms; diversification; life history; motility; oogamy

资金

  1. National Science Foundation (NSF)
  2. Arkansas Economic Development Commission
  3. NSF [DEB-1353131]
  4. Simons Foundation [403249]

向作者/读者索取更多资源

Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据