4.6 Article

A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought

期刊

NEW PHYTOLOGIST
卷 220, 期 3, 页码 836-850

出版社

WILEY
DOI: 10.1111/nph.15333

关键词

drought mortality; gas exchange; hydraulic limitations; modeling; photosynthesis optimization; plant drought responses; stomatal control; xylem cavitation

资金

  1. University of Utah Global Change and Sustainability Center
  2. National Science Foundation (NSF) [CNH-1714972]
  3. USDA [2017-05521]
  4. NSF [IOS-1450560]
  5. Direct For Biological Sciences [1450650] Funding Source: National Science Foundation

向作者/读者索取更多资源

Empirical models of plant drought responses rely on parameters that are difficult to specify a priori. We test a trait- and process-based model to predict environmental responses from an optimization of carbon gain vs hydraulic risk. We applied four drought treatments to aspen (Populus tremuloides) saplings in a research garden. First we tested the optimization algorithm by using predawn xylem pressure as an input. We then tested the full model which calculates root-zone water budget and xylem pressure hourly throughout the growing season. The optimization algorithm performed well when run from measured predawn pressures. The per cent mean absolute error (MAE) averaged 27.7% for midday xylem pressure, transpiration, net assimilation, leaf temperature, sapflow, diffusive conductance and soil-canopy hydraulic conductance. Average MAE was 31.2% for the same observations when the full model was run from irrigation and rain data. Saplings that died were projected to exceed 85% loss in soil-canopy hydraulic conductance, whereas surviving plants never reached this threshold. The model fit was equivalent to that of an empirical model, but with the advantage that all inputs are specific traits. Prediction is empowered because knowing these traits allows knowing the response to climatic stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据