4.6 Article

Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn

期刊

NEW JOURNAL OF PHYSICS
卷 20, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/aace51

关键词

graphene; spintronics; heterostructures; proximity exchange

资金

  1. DFG [SPP 1666, SFB 689, SFB 1277]
  2. European Unions Horizon 2020 research and innovation programme [696656]

向作者/读者索取更多资源

We investigate the electronic band structure and the proximity exchange effect in bilayer graphene (BLG) on a family of ferromagnetic multilayers Cr2X2Te6, X = Ge, Si, and Sn, with first principles methods. In each case the intrinsic electric field of the heterostructure induces an orbital gap on the order of 10 meV in the graphene bilayer. The proximity exchange is strongly band-dependent. For example, in the case of Cr2Ge2Te6, the low energy valence band of BLG has exchange splitting of 8 meV, while the low energy conduction band's splitting is 30 times less (0.3 meV). This striking discrepancy stems from the layer-dependent hybridization with the ferromagnetic substrate. Remarkably, applying a vertical electric field of a few V nm(-1) reverses the exchange, allowing us to effectively turn ON and OFF proximity magnetism in BLG. Such a field-effect should be generic for van der Waals bilayers on ferromagnetic insulators, opening new possibilities for spin-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据