4.6 Article

Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum

期刊

NEW JOURNAL OF PHYSICS
卷 20, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/aacac1

关键词

optomechanics; magnetic trapping; feedback cooling

资金

  1. Division Of Physics
  2. Direct For Mathematical & Physical Scien [1827071] Funding Source: National Science Foundation

向作者/读者索取更多资源

Levitated optomechanical systems, and particularly particles trapped in vacuum, provide unique platforms for studying the mechanical behavior of objects well-isolated from their environment. Ultimately, such systems may enable the study of fundamental questions in quantum mechanics, gravity, and other weak forces. While the optical trapping of nanoparticles has emerged as the prototypical levitated optomechanical system, it is not without problems due to the heating from the high optical intensity required, particularly when combined with a high vacuum environment. Here we investigate a magneto-gravitational trap in ultra-high vacuum. In contrast to optical trapping, we create an entirely passive trap for diamagnetic particles by utilizing the magnetic field generated by permanent magnets and the gravitational interaction. We demonstrate cooling the center of mass motion of a trapped silica microsphere from ambient temperature to an effective temperature near or below one milliKelvin in two degrees of freedom by optical feedback damping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据