4.6 Article

Amorphous saturated cerium-tungsten-titanium oxide nanofiber catalysts for NOx selective catalytic reaction

期刊

NEW JOURNAL OF CHEMISTRY
卷 42, 期 12, 页码 9501-9509

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nj00752g

关键词

-

资金

  1. Royal Golden Jubilee (RGJ) PhD Program within Thailand Research Fund (TRF) [PHD/0046/2556]

向作者/读者索取更多资源

Herein for the first time, Ce0.184W0.07Ti0.748O2- nanofibers are prepared by electrospinning to serve as a catalyst in the selective catalytic reduction (SCR) process. The addition of cerium is proven to inhibit crystallization of TiO2, yielding an amorphous TiOx-based solid solution stable up to 500 degrees C in air, with supersaturated substitutional Ce. At higher temperatures, anatase phase (titanium oxide) is then observed along with fluorite (cerium oxide). Tungsten is instead demonstrated to promote the reduction of the Ce4+ to Ce3+ with the formation of oxygen vacancies (). Catalytic experiments under the best working conditions (dry and in the absence of SO2) are performed to characterize the intrinsic catalytic behavior of the new catalysts. At a temperature lower than 300 degrees C, superior NOx conversion properties of the amorphous TiOx nanofibers over the crystallized TiO2 (anatase) nanofibers are observed and attributed to higher specific surface area (SSA), larger amount of oxygen vacancies, and higher amount of Ce3+ over Ce4+. Comparison with literature data for ceria-tungsten-based nanoparticles also points out higher catalytic performances for the developed nanofibers at the lowest temperatures (<300 degrees C). This is mainly attributed to the unique nanofibrous morphology and to the doping approach. The stability of the amorphous Ce-W-TiOx nanofibers over time (120 h) and over a number of cycles (5) is demonstrated. Yet, superior catalytic performances of the developed catalysts in a wide range of temperatures (200-500 degrees C) over state-of-the-art material V-W-titania nanoparticles and nanofibers are also proven.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据