4.6 Article

Fabrication and enhanced hydrogen evolution reaction performance of a Cu3BiS3 nanorods/TiO2 heterojunction film

期刊

NEW JOURNAL OF CHEMISTRY
卷 42, 期 6, 页码 4114-4120

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nj04569g

关键词

-

资金

  1. West Light Foundation of The Chinese Academy of Sciences (CAS)
  2. National Natural Science Foundation of China [61376066]

向作者/读者索取更多资源

Highly active and durable hydrogen evolution reaction (HER) catalysts are required for the low-cost and high-yield generation of clean energy from water splitting. Herein, a Cu3BiS3/TiO2 (C@T) heterojunction film is constructed by a facile dip-coating method for the synthesis of Cu3BiS3 nanorods on a TiO2 film. The heterojunction film is used as a catalyst in water splitting which exhibits a higher photoelectrochemical (PEC) performance and electrocatalytic activity than the respective pure Cu3BiS3 nanorods counterpart. Experimental results confirm that the PEC performance of the C@T heterojunction film displays a strong photoresponse of as high as approximate to 1.5 x 10(-4) A cm(-2) at an applied potential of -0.5 V vs. Ag/AgCl under visible light irradiation. What's more, the as-prepared C@T film shows the best electrocatalytic performance with an onset overpotential of 150 mV, a low Tafel slope of 42.67 mV dec(-1), a large current density of 10.8 mA cm(-2) at an overpotential of 220 mV, and a remarkable cycling stability. The enhanced PEC performance is associated with the formation of a heterojunction structure at the interface between TiO2 and Cu3BiS3, which facilitates light absorption and separation of photogenerated charge carriers. The growth of Cu3BiS3 nanorods on a TiO2 film modified the electronic structure and increased the electrochemical area, and thus is responsible for enhanced catalytic activity. Benefitting from its scalable preparation and properties, the Cu3BiS3 nanorods/TiO2 heterojunction film is indeed a promising catalyst for hydrogen evolution reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据