4.7 Article

Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia

期刊

NEUROIMAGE
卷 179, 期 -, 页码 414-428

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2018.06.043

关键词

Anaesthesia; Noise; Functional fragmentation; Alpha-activity

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2017-06662]

向作者/读者索取更多资源

The physiological mechanisms by which anaesthetic drugs modulate oscillatory brain activity remain poorly understood. Combining human data, mathematical and computational analysis of both spiking and mean-field models, we investigated the spectral dynamics of encephalographic (EEG) beta-alpha oscillations, observed in human patients undergoing general anaesthesia. The effect of anaesthetics can be modelled as a reduction of neural fluctuation intensity, and/or an increase in inhibitory synaptic gain in the thalamo-cortical circuit. Unlike previous work, which suggested the primary importance of gamma-amino-butryic-acid (GABA) augmentation in causing a shift to low EEG frequencies, our analysis demonstrates that a non-linear transition, triggered by a simple decrease in neural fluctuation intensity, is sufficient to explain the clinically-observed appearance - and subsequent slowing - of the beta-alpha narrowband EEG peak. In our model, increased synaptic inhibition alone, did not correlate with the clinically-observed encephalographic spectral changes, but did cause the anaesthetic induced decrease in neuronal firing rate. Taken together, our results show that such a non-linear transition results in functional fragmentation of cortical and thalamic populations; highly correlated intra-population dynamics triggered by anaesthesia decouple and isolate neural populations. Our results are able to parsimoniously unify and replicate the observed anaesthetic effects on both the EEG spectra and inter-regional connectivity, and further highlight the importance of neural activity fluctuations in the genesis of altered brain states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据