4.7 Article

Multivariate pattern analysis for MEG: A comparison of dissimilarity measures

期刊

NEUROIMAGE
卷 173, 期 -, 页码 434-447

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2018.02.044

关键词

MEG; EEG; Multi-voxel pattern analysis; Decoding; Representational similarity analysis; Cross-validation; Noise normalisation; Machine learning

资金

  1. Emmy Noether Award of the German Research Foundation (Deutsche Forschungsgemeinschaft
  2. DFG) [CI 241/1-1]
  3. DFG [STE 1430/6-1, STE 1430/6-2]

向作者/读者索取更多资源

Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naive Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross- validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross- validated Euclidean distance as a reliable and unbiased default choice for RSA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据